Diurnal fluctuations in seawater pH influence the response of a calcifying macroalga to ocean acidification.
نویسندگان
چکیده
Coastal ecosystems that are characterized by kelp forests encounter daily pH fluctuations, driven by photosynthesis and respiration, which are larger than pH changes owing to ocean acidification (OA) projected for surface ocean waters by 2100. We investigated whether mimicry of biologically mediated diurnal shifts in pH-based for the first time on pH time-series measurements within a kelp forest-would offset or amplify the negative effects of OA on calcifiers. In a 40-day laboratory experiment, the calcifying coralline macroalga, Arthrocardia corymbosa, was exposed to two mean pH treatments (8.05 or 7.65). For each mean, two experimental pH manipulations were applied. In one treatment, pH was held constant. In the second treatment, pH was manipulated around the mean (as a step-function), 0.4 pH units higher during daylight and 0.4 units lower during darkness to approximate diurnal fluctuations in a kelp forest. In all cases, growth rates were lower at a reduced mean pH, and fluctuations in pH acted additively to further reduce growth. Photosynthesis, recruitment and elemental composition did not change with pH, but δ(13)C increased at lower mean pH. Including environmental heterogeneity in experimental design will assist with a more accurate assessment of the responses of calcifiers to OA.
منابع مشابه
Correction: Diffusion Boundary Layers Ameliorate the Negative Effects of Ocean Acidification on the Temperate Coralline Macroalga Arthrocardia corymbosa
Anthropogenically-modulated reductions in pH, termed ocean acidification, could pose a major threat to the physiological performance, stocks, and biodiversity of calcifiers and may devalue their ecosystem services. Recent debate has focussed on the need to develop approaches to arrest the potential negative impacts of ocean acidification on ecosystems dominated by calcareous organisms. In this ...
متن کاملBiomarker response of climate change-induced ocean acidification and hypercapnia studies on brachyurian crab Portunus pelagicus
A laboratory level microcosm analysis of the impacts of ocean acidification on the environmental stress biomarkers in Portunus pelagicus (Linneaus 1758)exposed to a series of pH regimes expected in the year 2100 (pH 7.5 and 7.0) and leakage from a sub-seabed carbon dioxide storage site (pH 6.5 - 5.5) was carried out. Levels of the antioxidant enzyme catalase, the phase II detoxificatio...
متن کاملPlasticity of coral physiology under ocean acidification
Coral reefs are oases of life in the oceans, harbouring more than a quarter of all marine species. These vibrant ecosystems are founded on reef structures that are built by the CaCO3 skeletons of “stony” scleractinian corals. While productive and biodiverse, coral reef ecosystems are sensitive to many elements of global environmental change, including “ocean acidification” which impairs the cap...
متن کاملHow ocean acidification can benefit calcifiers
Reduction in seawater pH due to rising levels of anthropogenic carbon dioxide (CO2) in the world's oceans is a major force set to shape the future of marine ecosystems and the ecological services they provide [1,2]. In particular, ocean acidification is predicted to have a detrimental effect on the physiology of calcifying organisms [3]. Yet, the indirect effects of ocean acidification on calci...
متن کاملA physicochemical framework for interpreting the biological calcification response to CO2-induced ocean acidification
A generalized physicochemical model of the response of marine organisms’ calcifying fluids to CO2-induced ocean acidification is proposed. The model is based upon the hypothesis that some marine calcifiers induce calcification by elevating pH, and thus XA, of their calcifying fluid by removing protons (H ). The model is explored through two end-member scenarios: one in which a fixed number of H...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings. Biological sciences
دوره 280 1772 شماره
صفحات -
تاریخ انتشار 2013